

Faserdatenblatt C53 Bend-Insensitive (BI)

Die biegeverlustarme Singlemode-Faser C53 Bend-Insensitive (BI) erfüllt oder übertrifft die ITU-T Rec. G.652.D/G.657.A1 und die IEC 60793-2-50 Typ B-652.D/B-657.A1 Spezifikation für optische Fasern.

Kategorie	Beschreibung	Spezifikation
Geometrische Eigenschaften	Manteldurchmesser	125.0 ± 0.7 μm
	Mantel Unrundheit	≤ 0.7 %
	Kern (MFD) Mantel Konzentrizitätsfehler	≤ 0.5 µm
	Primär Coating Durchmesser 250µm Faser	245 ± 10 μm
	Primär Coating Unrundheit	≤ 5 %
	Primär Coating – Mantel Konzentrizitätsfehler	≤ 12.0 µm
Optische Eigenschaften	Modenfeld Durchmesser (MFD) bei 1310 nm	9.0 ± 0.4 μm
	Modenfeld Durchmesser (MFD) bei 1550 nm	10.1 ± 0.5 μm
	Dämpfung bei 1310 nm (verkabelt)	≤ 0.36 dB/km
	Dämpfung bei 1550 nm (verkabelt)	≤ 0.23 dB/km
	Lokale Diskontinuität bei 1310 und 1550 nm	≤ ± 0.05 dB
	Dispersionsnulldurchgang, λ0	1300 ~ 1324 nm
	Steigung im Dispersionsnulldurchgang	$\leq 0.092 \text{ ps/(nm}^2 \cdot \text{km)}$
	Grenzwellenlänge	≤ 1260 nm
	Polarisations Moden Dispersions (PMD) Koeffizient	≤ 0.1 ps/√km
	PMDQ Link Design Value (durchgeführt mit Q=0.01%, N=20)	≤ 0.06 ps/√km
	Gruppen Brechungsindex	1310 nm: 1.467
		1550 nm: 1.467
Mechanische Eigenschaften	Makro-Biegeverlust (10 Umdrehungen, 15 mm Radius)	1550 nm: ≤ 0.25 dB
		1625 nm: ≤ 1.0 dB
	Makro-Biegeverlust (1 Umdrehungen, 10 mm Radius)	1550 nm: ≤ 0.75 dB
		1625 nm: ≤ 1.5 dB
	Zugfestigkeit	≥ 0.7 GPa
	Abziehkraft (peak)	1.2 ~ 8.9 N
	Dynamic Fatigue Parameter (n _d)	≥ 20

