

Faserdatenblatt YC20 Bend-Insensitive (BI)

Die Singlemode-Faser YC20 Bend-Insensitive (BI) erfüllt oder übertrifft die ITU-T Rec. G.652.D/G.657.A1 und die IEC 60793-2-50 Typ B1.3/B6.a1 Spezifikation für optische Fasern.

Kategorie	Beschreibung	Spezifikation	
		unverkabelt	verkabelt
Geometrische Eigenschaften	Manteldurchmesser	125.0 ± 0.7 μm	
	Mantel Unrundheit	≤ 0.7 %	
	Kern (MFD) Mantel Konzentrizitätsfehler	≤ 0.5 µm	
	Primär Coating Durchmesser 250µm Faser	235~255 μm (ungefärbt)	
		250 ± 15 μm (gefärbt)	
	Primär Coating Durchmesser 200µm Faser	190~210 μm (ungefärbt)	
		210 \pm 15 μ m (gefärbt)	
	Primär Coating – Mantel Konzentrizitätsfehler	≤ 12.0 µm	
Optische Eigenschaften	Modenfeld Durchmesser (MFD) bei 1310 nm	8.4 ~ 9.2 μm	
	Dämpfung bei 1310 nm	≤ 0.35 dB/km	≤ 0.36 dB/km
	Dämpfung bei 1383 nm	≤ 0.35 dB/km	≤ 0.36 dB/km
	Dämpfung bei 1550 nm	≤ 0.21 dB/km	≤ 0.22 dB/km
	Lokale Diskontinuität bei 1310 und 1550 nm	≤ 0.05 dB	
	Dispersionsnulldurchgang, λ0	1300 ~ 1324 nm	
	Steigung im Dispersionsnulldurchgang	\leq 0.092 ps/(nm ² ·km)	
	Grenzwellenlänge	≤ 1260 nm	
	Polarisations Moden Dispersions (PMD) Koeffizient	≤ 0.2 ps/√km	
	PMDQ Link Design Value (durchgeführt mit Q=0.01%, N=20)	≤ 0.1 ps/√km	
	Gruppen Brechungsindex	1310 nm: 1.466	
		1550 nm: 1.467	
Mechanische Eigenschaften	Makro-Biegeverlust (10 Umdrehungen, 15 mm Radius)	1550 nm: ≤ 0.25 dB	
		1625 nm: ≤ 1.0 dB	
	Makro-Biegeverlust (1 Umdrehungen, 10 mm Radius)	1550 nm: ≤ 0.75 dB	
		1625 nm: ≤ 1.5 dB	
	Zugfestigkeit	≥ 100 kpsi (0.69 GPa)	
	Abziehkraft (peak)	1.3 ~ 8.9 N	
	Dynamic Fatigue Parameter (n _d)	≥ 20	